河北大学学报(自然科学版) ›› 2025, Vol. 45 ›› Issue (3): 299-308.DOI: 10.3969/j.issn.1000-1565.2025.03.008

• • 上一篇    

人工智能辅助的深海运载器探测技术研究进展

廖勇,朱俊豪   

  • 收稿日期:2024-10-14 发布日期:2025-05-14
  • 作者简介:廖勇(1982—),男,重庆大学副研究员,博士,主要从事智能信号与信息处理、数字技术及其应用方向研究.
    E-mail:liaoy@cqu.edu.cn
  • 基金资助:
    重庆市自然科学基金资助项目(CSTB2023NSCQ-MSX0025)

Research progress on artificial intelligence-assisted deep-sea vehicle exploration technology

LIAO Yong, ZHU Junhao   

  1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
  • Received:2024-10-14 Published:2025-05-14

摘要: 海洋作为人类重要的资源宝库,蕴藏着丰富的水体、矿产和生物资源,而深海环境复杂,制约了人类对其深入探索.发展深海探测技术,尤其是人工智能辅助的深海运载器探测技术,已成为提升科学认知和可持续资源开发的迫切需求.为此,本文系统综述了目前人工智能在水下导航及通信、水下路径规划及安全避障、水下目标检测与识别、潜水器故障诊断与容错控制等一系列深海运载器关键技术中的运用,指出了当前人工智能辅助深海探测面临的问题与挑战,分析了未来人工智能辅助深海运载器探测技术可能的发展趋势,为相关领域的研究提供参考.

关键词: 人工智能, 深海探测, 深海运载器, 深度学习, 神经网络

Abstract: Served as a vital reservoir of resources for human, the ocean contains abundant water, mineral, and biological resources. However, the complexity and extremity of the deep-sea environment impose significant limitations on human exploration efforts. Consequently, developing deep-sea detection technologies, particularly artificial intelligence(AI)-assisted deep-sea vehicle exploration technologies, has become an urgent necessity for augmenting scientific knowledge and fostering sustainable resource utilization. Therefore, this paper systematically reviews the application of AI on several critical technologies of deep-sea vehicles, including underwater navigation and communication, underwater path planning and safe obstacle avoidance, underwater target detection and recognition, as well as fault diagnosis and fault-tolerant control mechanisms of underwater vehiches. Furthermore, it pinpoints the challenges and obstacles which AI-assisted deep-sea exploration are currently confronted with and analyzes prospective developmental trends for such technologies, thus providing a reference for future researches in this field.

Key words: artificial intelligence, deep-sea exploration, deep-sea vehicles, deep learning, neural network

中图分类号: